Rectangular Supercritical Wing Results using NSU3D

Dimitri Mavriplis
Mike Long
Zhi Yang
University of Wyoming

NSU3D Description

- Unstructured RANS solver
- Widely used for fixed wing (steady) and rotorcraft (unsteady)
 - Vertex-based discretization
 - Mixed elements (prisms in boundary layer)
 - Matrix artificial dissipation
 - Option for Roe scheme with gradient reconstruction
 - No cross derivative viscous terms
 - $\nabla(\mu\nabla v)$ (Similar to incompressible Full NS)
 - Option for full Navier-Stokes terms
 - Extended stencil with edge-based normal derivatives

Solver Description (cont'd)

- Spalart-Allmaras turbulence model
 - (original published form)
 - Used exclusively in AePW calculations
- Options for
 - Wilcox k-omega model
 - Mentor SST Model
 - Not exercised in AePW

Solution Strategy

- Steady or BDF2 Implicit Time-stepping
- Jacobi/Line Preconditioning
 - Line solves in boundary layer regions
 - Relieves aspect ratio stiffness
- Agglomeration multigrid
 - Fast grid independent convergence
- Parallel implementation
 - MPI/OpenMP hybrid model
 - MPI only on local 512 core cluster and on NASA Pleiades Supercomputer

Mesh Motion Approach

- · Linear elasticity analogy with prescribed modulus E
 - More robust than simple mesh-spring analogy
 - Solved using line-implicit multigrid algorithm
 - Similar to CFD flow solver
 - Grid independent convergence rates including highly stretched boundary-layer type grids
 - Generally converged 10 orders of magnitude at each time step

Cases Run

Steady State Runs

- Coarse, Medium, Fine meshes: (Solid Mesh, Mixed NC)
- Incidence=2° and 4°

Time Dependent Runs

- Coarse and medium meshes
- f=10Hz and f=20Hz
- 64 time step per period
- 50 multigrid cycles per time step
 - Determined by study on coarse grid as sufficient
 - · Full time step and convergence study planned as follow up
- Coarse grid: 0.93 secs/cycle on 128 cores
- Medium grid: 1.35 sec/cycle on 256 cores

Steady Results

Large difference between air and heavy gas γ

RSW Steady-State Results Incidence=2°

- Overprediction of lift at inboard stations
- Possible wall boundary layer effects (too thin)

RSW Steady-State Results Incidence=2°

- Better agreement at outboard stations
- Possible wall boundary layer effects (too thin)

RSW Steady-State Results Incidence=4°

- Overprediction of lift at inboard stations
- Possible wall boundary layer effects (too thin)

RSW Steady-State Results Incidence=4°

- Better agreement at outboard stations
- Possible wall boundary layer effects (too thin)

Grid Convergence

Grid Convergence

- Lift variation on fine grid at 4°
- Otherwise reasonable grid convergence

CFL3D Computed BL

Time Dependent Results C_L Time histories

- Relatively benign behavior (as expected)
 - 64 time steps per period

Time Dependent Results C_D Time histories

600

f=10Hz f=20Hz

- Relatively benign behavior (as expected)
 - 64 time steps per period

Time Dependent Results C_M Time histories

- Relatively benign behavior (as expected)
 - 64 time steps per period

Time Dependent Residual Histories

- Approximately 1 order magnitude convergence per time step
 - 64 time steps per period, 50 multigrid cycles per time step
- RMS density correction (not residual)
- Forces adequately converged at each time step
- 20Hz case delivers more consistent convergence (expected)
- Influence of time step size studied on coarser mesh
 - Little effect: smooth force/moment histories

Time Dependent Results C_L Time histories

Medium Grid

Coarse Grid

- Little influence of grid size (also seen in Cps)
- Fine grid not run time dependent

Conclusions and Future Work

- Little sensitivity of mag/phase Cp to mesh size
 - (coarse, medium)
- Little expected sensitivity to time step size

- Investigate wall boundary layer effects
- More extensive steady state convergence
- Run fine grid time dependently
- Time step and convergence study on finer meshes
 - Not expected to change results